NON-CLASSICAL NUCLEATION THEORY OF ORDERED INTERMETALLIC PRECIPITATES--APPLICATION TO THE A1-Li ALLOY
نویسنده
چکیده
-The continuum non-classical nucleation theory of Cahn and Hilliard for isostructural decomposition has been extended to the case in which the precipitate and matrix not only have different compositions, but also have different structures. The particular example of precipitation of ordered intermetallics from a disordered matrix is considered. It is found that a critical nucleus consists of fluctuations of both composition and long-range order parameter profiles. It is shown that only when the composition of the initial disordered matrix is near the phase boundary of the disordered phase, are the composition and order parameter values inside the critical nucleus close to those of the equilibrium ordered phase, and that the critical profiles become increasingly diffuse as the composition of the disordered matrix approaches the ordering instability line. Based on the non-classical nucleation theory, the size of critical fluctuations, the critical free energy change and the nucleation rate are estimated for the specific case of the precipitation of metastable 6' ordered phase from a disordered matrix in the AI-Li alloy. Copyright ~" 1996 Acta Metallurgica Inc.
منابع مشابه
Effect or Inoculation on Microstructure and Properties of Low C-Mn and Low Alloy Steels
Effect of the addition of various inoculants on the morphology and mechanical properties of low C-Mn and low alloy steel samples is studied by thermal and mechanical processing of the samples after solidification. According to the results obtained from metallographic studies with the electron microscope and microanalysis with x-rays, the distribution of inoculating agents in the steel matrix is...
متن کاملEffect of Deformation-Induced Defects on the Microstructure and Pitting Corrosion Behavior of Al-Ag Alloy
In this study, a wide range of combined ageing treatments and cold work deformations in the Al 4.2 wt% Ag alloy matrix were proposed, aiming to investigate the effect of defects such as precipitates (Ag2Al plates) and dislocations on the mechanical and electrochemical behavior of Al–4.2 wt% Ag alloys. Further reductions of thickness from 10 to 60%, decreases the mean size of Ag2...
متن کاملCo-Precipitation, Strength and Electrical Resistivity of Cu–26 wt % Ag–0.1 wt % Fe Alloy
Both a Cu-26 wt % Ag (Fe-free) alloy and Cu-26 wt % Ag-0.1 wt % Fe (Fe-doping) alloy were subjected to different heat treatments. We studied the precipitation kinetics of Ag and Cu, microstructure evolution, magnetization, hardness, strength, and electrical resistivity of the two alloys. Fe addition was incapable of changing the precipitation kinetics of Ag and Cu; however, it decreased the siz...
متن کاملEnhanced Age Strengthening of Mg-Nd-Zn-Zr Alloy via Pre-Stretching
Pre-stretching was carried out to modify the microstructure of Mg-Nd-Zn-Zr alloy to enhance its age strengthening. The results indicated that more heterogeneous nucleation sites can be provided by the high density of dislocations caused by the plastic pre-stretching deformation, as well as speeding up the growth rate of precipitates. Comparison of microstructure in non-pre-stretched specimens a...
متن کاملAging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel
High-strength low-carbon ferritic steels attaining a maximum yield strength of 1600 MPa by combined Cu and NiAl precipitationstrengthening were developed. The yield strength of the alloys increases monotonically with the total concentration of the principal alloying elements i.e. Mn, Cu, Ni and Al. At 12.40 at.%, a 1600 MPa yield strength is achieved after solution treatment at 950 C followed b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001